Interestingly, recent studies on human and mouse anti-prM mAbs [2

Interestingly, recent studies on human and mouse anti-prM mAbs [24–32] suggest that prM-specific mAbs have a significant role to enhance infection of standard DENV and imDENV particles. However, there have been few attempts to locate the epitopes of prM ptotein. To gain a deeper understanding of the antigenic structures of prM and their functions in human immune response to DENV, we identified the epitope of prM mAb 4D10 and investigated the ability of mAb 4D10

and antibody against epitope see more peptide PL10 to mediate ADE infection of standard DENV1-4 and imDENV particles. In this study, we generated and characterized a DENV this website serocomplex cross-reactive prM mAb 4D10. Then, we successfully mapped the epitope of 4D10 to amino acid residues

14 to 18 of DENV1-4 prM protein using phage display technology. The epitope peptide showed conformity with one region (amino acid residues 12 to 26) predicted by bioinformatics analysis. Consequently, the epitope peptide (13IVSRQEKGKS22) was synthesized for further study. We confirmed that PL10 was a DENV serocomplex cross-reactive epitope peptide and showed to be highly immunogenic in Balb/c mice. Also, PL10 could successfully distinguish DENV serotypes from other flaviviruses in immunized selleck kinase inhibitor mice sera. The high degree of antibody cross-reactivity among different flaviviruses has been a diagnostic challenge to distinguish various flaviviral infections, and this limitation is apparent for members of DENV serotypes [57, 58]. It has been previously reported that prM-specific antibodies could be applied as a diagnostic marker to distinguish previous infection of DENV from JEV [22]. Thus, it

is remarkable that the DENV-specific epitope in prM has great potential to improve DENV serological diagnostic tests. Furthermore, PL10 could successfully recat with DENV2-infected patient sera but not with sera of healthy donors, suggesting that the epitope peptide PL10 could possibly be used as a serologic reagent in the diagnosis of DENV-infected patients. The control peptide PH10 (3LTTRGGEPHM12) may be the possible epitope region of prM protein predicted by bioinformatics analysis, but the antibody titer of PH10 was not high enough. For synthetic Edoxaban peptides to serve as effective immunogens, they must comprise potential antigenic sites to promote B cell interaction [59]. Immature particles produced in furin-deficient LoVo cells have very high levels (94%) of prM-containing particles. Interestingly, both mammalian cells (BHK-21 or Vero) and insect cells (C6/36) infected with DENV release as many as 30% prM- containing immature particles [42, 60] suggesting that cleavage of prM to M is not very effective. Therefore, cells infected with DENV release a heterogeneous mixture of not only fully mature(containing M) and immature (containing prM) but also partially mature virus particles (containing prM and M) [42, 61, 62].

Comments are closed.