41 Mesenchymal stem cells have been found to exert a therapeutic effect in a wide array of diseases, acting through their unique immunomodulatory abilities that can alter the pro-inflammatory course of injury. This may involve the secretion of paracrine factors that dampen inflammation and in turn promote tissue remodelling and repair.39 Their ability to modulate the immune response Selleckchem MK-8669 in vivo was first reported by Bartholomew et al.42 who demonstrated that the intravenous administration of allogeneic MSC to baboons resulted in prolonged skin-graft survival. MSC have also been reported to be beneficial in an autoimmune disease setting. In a mouse model of multiple sclerosis termed autoimmune encephalomyelitis (EAE), the administration
of MSC at the onset of disease induced peripheral T-cell anergy against the pathogenic peptide myelin oligodendrocyte glycoprotein (MOG), resulting in the amelioration of the progression of injury.43 Furthermore, the administration
of MSC to mice with diabetes type 1 resulted in the recovery of damaged insulin producing pancreatic islets and β-cells and decreased blood glucose levels.44 Two mechanisms appear to be aiding this recovery. In addition to the production of trophic growth factors, MSC also inhibit the β-cell specific T-cell immune reaction.45 see more In a mouse model of lung fibrosis, MSC reduced local inflammation, collagen accumulation and consequently fibrosis.46 Subsequent studies demonstrated that MSC conferred this protection by inhibiting the release of interleukin (IL)-1α and tumour necrosis factor (TNF)-α through the secretion of IL-1 receptor antagonist (IL-1RA).47 The local injection of MSC to mice following coronary ligation induced the regeneration of cardiac tissue and improved myocardial function.48 Following intravenous administration, MSC preferentially homed to the infarct site where they promoted angiogenesis and myogenesis and mediated myocardial repair
via paracrine mechanisms.49 The first phase I clinical trial in humans involved the intravenous infusion of MSC into patients with hematologic malignancies in complete remission resulting in no adverse events.50 Subsequent trials in breast cancer NADPH-cytochrome-c2 reductase patients showed that MSC infusion, following high dose chemotherapy and peripheral-blood progenitor-cell infusion resulted in enhanced hematopoietic engraftment and recovery.51 The immunosuppressive effects of MSC have also effectively been used to treat a leukaemia patient with severe treatment-resistant grade IV acute graft-versus-host disease (GvHD).52 Following the promising results obtained from these trials, MSC have since been clinically trialled in a diverse range of other conditions. Numerous phase I–II and III clinical trials exploring the therapeutic potential of MSC in conditions such as diabetes type 1, myocardial infarction, ischemic stroke, Crohn’s disease, cirrhosis and osteoarthritis have been completed or are currently in progress (see http://www.