9-0.4 miles/day). A sedentary control
group sat daily on immobile treadmills (n=8). Half of the runners had an additional sedentary learn more period for 3 months at the end of the exercise period (n=8). In all groups, half of the monkeys were middle-aged (10-12 years old) and half were more mature (15-17 years old). Starting the fifth week of exercise training, monkeys underwent cognitive testing using the Wisconsin General Testing Apparatus (WGTA). Regardless of age, the exercising group learned to use the WGTA significantly faster (4.6 +/- 3.4 days) compared to controls (8.3 +/- 4.8 days; P=0.05). At the end of 5 months of running monkeys showed increased fitness, and the vascular volume fraction in the motor cortex in mature adult HSP990 running monkeys was increased significantly compared to controls (P=0.029). However, increased vascular volume did not remain apparent after a 3-month sedentary period. These findings indicate that the level of exercise associated with improved fitness in middle-aged humans is sufficient to increase both the rate of learning and blood flow to the cerebral cortex, at least during the
period of regular exercise. (C) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.”
“In infected cells, hepatitis C virus (HCV) induces the formation of membrane alterations referred to as membranous webs, which are sites of RNA replication. In addition, HCV RNA replication also occurs in smaller membrane structures that are associated with the endoplasmic reticulum. However, cellular mechanisms
involved in the formation of HCV replication complexes remain largely unknown. Here, we used brefeldin A (BFA) to investigate cellular mechanisms involved in HCV infection. BFA acts on cell membranes by interfering with the activation of several members of the family of ADP-ribosylation factors (ARF), which can lead to a wide range of inhibitory actions on membrane-associated mechanisms of the secretory and endocytic pathways. Our data show that HCV RNA replication is highly sensitive to BFA. Individual knockdown of the cellular targets of BFA using RNA interference and the use of a specific pharmacological inhibitor identified GBF1, a guanine nucleotide Wortmannin cost exchange factor for small GTPases of the ARF family, as a host factor critically involved in HCV replication. Furthermore, overexpression of a BFA-resistant GBF1 mutant rescued HCV replication in BFA-treated cells, indicating that GBF1 is the BFA-sensitive factor required for HCV replication. Finally, immunofluorescence and electron microscopy analyses indicated that BFA does not block the formation of membranous web-like structures induced by expression of HCV proteins in a nonreplicative context, suggesting that GBF1 is probably involved not in the formation of HCV replication complexes but, rather, in their activity.