In mice, CJ9-gD induces strong and long-lasting humoral and Th1-associated cellular immune responses against HSV-1 and HSV-2 [27, 29]. Immunization with CJ9-gD protects mice against HSV-1 ocular keratitis and guinea pigs against HSV-1 skin disease [27, 30] as well as genital herpetic disease caused by wild-type HSV-1 and HSV-2 in mice [29]. Previously, we have shown further that CJ9-gD is a safer and more effective vaccine than non-gD-expressing parental
CJ83193 virus against HSV-1 BIRB 796 concentration infection [27, 29]. The guinea pig model of HSV-2 genital infection offers a unique advantage over learn more the mouse model to investigate the efficacy of candidate HSV vaccine in protection against primary and recurrent HSV-2 genital infection and disease. Specifically, following primary intravaginal infection with HSV-2, guinea SGC-CBP30 molecular weight pigs develop vesicular lesions resembling those in humans, including development, appearance, and duration of disease. In contrast to mice in which spontaneous reactivation from latent infection rarely occurs in the vaginal tract, guinea pigs undergo episodic spontaneous recurrent infection
and disease after recovering from initial genital disease [31, 32]. In the current report, we investigate whether CJ9-gD can serve as an effective vaccine in protection against both primary and recurrent HSV-2 genital infection and disease in guinea pigs following intravaginal challenge with wild-type HSV-2. Results Induction of HSV-2-specific neutralization antibodies The ability of CJ9-gD to elicit HSV-2-specific neutralizing antibodies was determined Pregnenolone (Fig. 1). The HSV-2-specific neutralization antibody titer was detected in serum from all immunized guinea pigs and increased significantly from the first to the second vaccination (p < 0.005) with a peak titer 3 weeks after the second vaccination of 1400. No HSV-2-specific neutralization antibody
was detected in serum from mock-immunized animals at 1:2-dilution before challenge. After challenge with the wild-type HSV-2, the neutralization antibody titer in immunized animals increased 2-fold (p > 0.05) and was 1.5-fold higher than that in mock-immunized controls following challenge. Figure 1 Induction of HSV-2-specific neutralizing antibodies in immunized guinea pigs. Two sets of guinea pigs (n = 8; n = 10) were injected s.c. with 5 × 106 PFU/animal of CJ9-gD or with DMEM and boosted after 3 weeks. Blood was taken 3 weeks after each immunization and 5 weeks after challenge. After heat inactivation, serum from each animal was assayed separately for HSV-2-specific neutralizing antibody titers on Vero cell monolayers. The results represent average titers ± SEM. P-value was assessed by Student’s t-test (* p < 0.005).