Synthesis

and purification

Synthesis

and purification Verubecestat ic50 of covalently closed circular DNA (cccDNA) Covalently closed circular DNA containing a single 1,3-intrastrand d(GpTpG)-Cisplatin cross link (pt-GTG) was produced by priming 30 μg of plus strand M13 mp18 DNA modified to contain a sequence complementary to the platinated oligonucleotide within the polycloning site [48] with a 5-molar excess of 5′-phosphorylated platinated oligonucleotide in a 200-μl reaction mixture containing 10 mM Tris-HCl (pH7.9), 50 mM NaCl, 10 mM MgCl2, 1 mM DTT, 600 μM each of dATP, dCTP, dGTP and TTP, 2 mM ATP, 60 units of T4 DNA polymerase and T4 ligase (New England Biolab) for 4 h at 37°C. Closed circular DNA was isolated by CsCl/EtBr density gradient centrifugation and purified by consecutive butanol extraction, centrifugation in cetricon-10 microconcentrator (Amicon) and a Sephadex G-25 column (Sigma). DNA substrates were stored at 80°C in 10 mM Tris-HCl, 1 mM EDTA pH 8.0. Dual incision assay Ten μl reaction mixture contain 19 μg cell extract, 32 ng pt-DNA, 5 mM MgCl2, 40 mM HEPES-KOH pH 7.8, 0.5 mM Dithiothreitol, 2 mM ATP, 23 mM phosphcreatine, 18 μg bovine serum albumin (BRL, nuclease free). The reaction mixtures were incubated for a {Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|buy Anti-infection Compound Library|Anti-infection Compound Library ic50|Anti-infection Compound Library price|Anti-infection Compound Library cost|Anti-infection Compound Library solubility dmso|Anti-infection Compound Library purchase|Anti-infection Compound Library manufacturer|Anti-infection Compound Library research buy|Anti-infection Compound Library order|Anti-infection Compound Library mouse|Anti-infection Compound Library chemical structure|Anti-infection Compound Library mw|Anti-infection Compound Library molecular weight|Anti-infection Compound Library datasheet|Anti-infection Compound Library supplier|Anti-infection Compound Library in vitro|Anti-infection Compound Library cell line|Anti-infection Compound Library concentration|Anti-infection Compound Library nmr|Anti-infection Compound Library in vivo|Anti-infection Compound Library clinical trial|Anti-infection Compound Library cell assay|Anti-infection Compound Library screening|Anti-infection Compound Library high throughput|buy Antiinfection Compound Library|Antiinfection Compound Library ic50|Antiinfection Compound Library price|Antiinfection Compound Library cost|Antiinfection Compound Library solubility dmso|Antiinfection Compound Library purchase|Antiinfection Compound Library manufacturer|Antiinfection Compound Library research buy|Antiinfection Compound Library order|Antiinfection Compound Library chemical structure|Antiinfection Compound Library datasheet|Antiinfection Compound Library supplier|Antiinfection Compound Library in vitro|Antiinfection Compound Library cell line|Antiinfection Compound Library concentration|Antiinfection Compound Library clinical trial|Antiinfection Compound Library cell assay|Antiinfection Compound Library screening|Antiinfection Compound Library high throughput|Anti-infection Compound high throughput screening| further 30 min. To analyze the release of DNA containing the lesion, a 34-mer oligonucleotide is used [49] as

a template by sequanase to incorporate radiolabeled dCTP on the 3′ end of the excised fragment then the excised labelled fragments were analyzed on 14% polyacrylamide gel. selleckchem Results HBx expression modulates the UV survival profile of Chang liver cells The effect of HBx expression on repair efficiency of a UV-damaged DNA in the human liver cell was monitored. HBx expressing plasmid pSBDR and a neomycin resistant plasmid pRC/CMV (control) were co-transfected into Chang liver cells. In the plasmid pSBDR, the HBx coding sequences are placed under the transcriptional control of native promoter and enhancer. pRC/CMV DNA was UV damaged for 2, 6, and 8 and 10 J/m2 of UV radiation. As a control, UV-damaged pRC/CMV DNA was co-transfected along with a plasmid pHEN100 lacking the coding

sequences of HBx. Cells were counted prior to co-transfection and selected in media containing G-418 for 2 weeks. Thereafter, G-418 resistant clones were counted. A decrease in the number of G-418 resistant clones per 105 cells was observed in HBx expressing cells Oxymatrine when compared with non-expressing cells (Figure 1). Figure 1 UV survival profile of HBx expressing human liver cells. HBx expression plasmid pSBDR and UV-damaged pRC/CMV were co transfected into chang liver cells. Plates were incubated in dark for 2 weeks in the presence of G418. The number of G418 resistant cells per 105 cells is plotted. Live cells were counted by staining with trypan blue prior to transfection. The ordinate represents the survival fraction, while the abscissa displays the dosage of UV irradiation. Each bar represents Mean ± S.D.

Comments are closed.