2E) To further confirm these findings, we purified CD4+

2E). To further confirm these findings, we purified CD4+

T cells from B6 BCG-vaccinated and unvaccinated DLNs at different time points postvaccination and measured cytokine mRNA induction in these cells. Consistent with data shown in Fig. 2D, IL-17 mRNA induction occurred in CD4+ T cells earlier than the induction of IFN-γ mRNA, which was detected on day 14 postvaccination (Fig. 2F). Together, our data show that BCG vaccination induces an early IL-23-dependent Th17-cell response that precedes the Th1-cell response, and is required for the induction of an effective BCG vaccine-induced MK-8669 mw Th1-cell response. Th17 cells are induced early in vivo following BCG vaccination and are important for subsequent generation of vaccine-induced Th1 cells at later time points (Figs. 1 and 2). Therefore, we then addressed whether the Th1- and Th17-cell polarizing cytokines namely IL-12 or IL-23 are induced in DCs in response to BCG exposure. We found that following BCG exposure, DCs produced both IL-23 and IL-12 cytokines (Fig. 3A and B). Interestingly, BCG also induced high levels of the anti-inflammatory cytokine, IL-10 in BCG-exposed DCs (Fig. 3C). IL-10 is an anti-inflammatory cytokine that inhibits IL-12 production and Th1-cell differentiation 26. Accordingly, AZD9291 datasheet IL-10 also inhibits IL-12 production in BCG-infected

DCs and the generation of IFN-γ-producing cells 27. Based on these data, we hypothesized that the absence of early Th1-cell responses in vivo following BCG vaccination was due to high BCG-induced IL-10 levels (Fig.

3C) and that IL-17 dependence to induce Th1-cell responses (Fig. 1) was a host strategy to overcome the IL-10-mediated inhibition. To address this hypothesis, we first treated BCG-stimulated DCs with IL-10-neutralizing antibody and measured IL-12 production in supernatants. GNA12 As expected 27, neutralization of BCG-induced IL-10 resulted in significantly increased production of IL-12 (Fig. 3D). We also determined the effect of IL-10 neutralization on Th1 cell generation by coculturing naïve OT-II TCR Tg T cells with BCG/OVA323–339-treated DCs in the presence of IL-10-neutralizing antibody. Consistent with our hypothesis, we report that T-cell-derived IFN-γ production was inhibited in the presence of BCG and neutralization of IL-10 reversed BCG-mediated inhibition of IFN-γ production in T-cell supernatants (Fig. 3E). These data suggest that despite induction of some IL-12 in BCG-exposed DCs, coincident induction of IL-10 inhibits Th1-cell responses. Importantly, Ag85B-specific Th1-cell responses detected in vivo were also increased in BCG-vaccinated il10−/− mice when compared with B6 BCG-vaccinated mice (Fig. 3F).

Following transplantation, only prednisone and azathioprine were

Following transplantation, only prednisone and azathioprine were given. Their outcome was compared with a group of HLA-identical living recipients (n = 53) and a group of one-or two haplotype-mismatched living donor recipients (n = 54) treated with triple immunosuppression and induction therapy. Permanent T cell crossmatch sensitization occurred in 11 of the 163 patients (7%). Actual one- and five-year graft survivals were 94%, Veliparib order 100%, 100% and 72%, 85% and 71% for DST-treated groups with one HLA haplotype mismatched donors

(n = 121), two HLA haplotype mismatched related donors (n = 14) and two haplotype-mismatched unrelated donors, respectively. This was comparable to the HLA identical group. No lymphoproliferative or CMV disease was seen in the DST group. In a retrospective paediatric study (Leone

et al.13), the results FK506 of DST plus post-transplant immunosuppression with prednisone and azathioprine were compared with a routine triple immunosuppression group. All received haploidentical grafts. Three of 24 patients treated with DST had circulating cytotoxic antibodies to the donor. There was no difference in graft or patient survival at 1 year or in mean rejection episodes. However, there was less hospitalization and less severe rejection during the first 3 months in the cyclosporine (non-DST) group. Given the equivalent graft survival and the risk of recipient sensitization, the authors concluded that routine triple immunosuppression is preferable. Anderson et al.14 administered donor-specific whole blood or buffy

coat in conjunction with azathioprine immunosuppression in 163 patients. Transient sensitization occurred in 2% and permanent sensitization in 7%. Over the 10 year duration, DST + azathioprine graft survival was similar to the HLA-identical sibling transplantation. The CMV sepsis rate was 2% and there was no occurrence of lymphoproliferative neoplasms. Please refer to the enclosed evidence tables. Kidney Disease Outcomes Quality Initiative: There is some evidence that Lonafarnib donor-specific transfusion with living donor transplantation improves survival, but the decision to perform donor-specific transfusion must still be made on a case-by-case basis. Blood transfusions can induce antibodies to histocompatibility leukocyte antigens that can reduce the success of kidney transplantation; thus, transfusions generally should be avoided in patients awaiting a renal transplant. UK Renal Association: No recommendation. Canadian Society of Nephrology: No recommendation. European Best Practice Guidelines: No recommendation. International Guidelines: No recommendation. No recommendation. Fiona Mackie has no relevant financial affiliations that would cause a conflict of interest according to the conflict of interest statement set down by CARI.


“Please cite this paper as: Bruns, Watanpour, Gebhard, Fle


“Please cite this paper as: Bruns, Watanpour, Gebhard, Flechtenmacher, Galli, Schulze-Bergkamen, Zorn, Büchler and Schemmer (2011).

Glycine and Taurine Equally Prevent Fatty Livers from Kupffer Cell-Dependent Injury: An In Vivo Microscopy Study. Microcirculation 18(3), 205–213. Background:  IRI still is a major problem in liver surgery due to warm ischemia and organ manipulation. Steatosis is not only induced by diabetes, hyperalimentation, alcohol and toxins, but also chemotherapy given before resection. Since steatotic livers are prone to Kupffer cell-dependent IRI, protection of steatotic livers is of special interest. This study was designed to compare the effect of taurine and glycine on IRI in steatotic

livers. Materials and Methods:  Steatosis was induced with ethanol Ipatasertib mouse (7 g/kg b.w.; p.o.) in female SD rats. Ten minutes after inactivation of Kupffer cells with taurine or glycine (300 mM; i.v.), left liver lobes underwent 60 minutes of warm ischemia. Controls received the same volume of valine (300 mM; i.v.) or normal saline. After reperfusion, white https://www.selleckchem.com/EGFR(HER).html blood cell-endothelial interactions and latex-bead phagocytosis by Kupffer cells were investigated. Liver enzymes were measured to estimate injury. For statistical analysis, ANOVA and Student’s t-test were used. Results:  Glycine and taurine significantly decreased leukocyte- and platelet-endothelium interactions and latex-bead phagocytosis

(p < 0.05). Liver enzymes were significantly lower after glycine and taurine (p < 0.05). Conclusions:  This study shows that preconditioning with taurine or glycine is equally effective in preventing injury to fatty livers most likely via Kupffer cell-dependent mechanisms. "
“Angiogenesis is a multistep process that requires intricate changes in cell shape to generate new blood vessels. IF are a large family of proteins that play an important structural and functional role in forming and regulating the cytoskeleton. Vimentin, a major type III intermediate filament protein is expressed in endothelial and other mesenchymal cells. The structure of vimentin is conserved in mammals and shows dynamic expression profiles in various cell types and different developmental stages. Although initial studies with vimentin-deficient PIK3C2G mice demonstrated a virtually normal phenotype, subsequent studies have revealed several defects in cell attachment, migration, signaling, neurite extension, and vascularization. Regulation of vimentin is highly complex and is driven by posttranslational modifications such as phosphorylation and cleavage by intracellular proteases. This review discusses various novel functions which are now known to be mediated by vimentin, summarizing structure, regulation and roles of vimentin in cell adhesion, migration, angiogenesis, neurite extension, and cancer.

05), but not in the ACE/ARB group (P > 0 05) Conclusion:  The fi

05), but not in the ACE/ARB group (P > 0.05). Conclusion:  The findings suggest selleck that ACE/AII inhibitors appeared to have a slower rate of decline in ultrafiltration and RRF, effectively protect against

peritoneal fibrosis in long-term peritoneal dialysis. Long-term follow up seems to be required to draw more conclusions. “
“Diabetic nephropathy (DN) is the most common cause of chronic kidney failure and end-stage renal disease in the Western world. Studies from diabetic animal models and clinical trials have shown that inhibition of the renin-angiotensin system delays the progression of advanced DN. However, a recent large-scale clinical trial has revealed that inhibition of renin-angiotensin system in early phases of DN does not slow the decline of renal function or the development of morphological lesions, suggesting that different mechanism(s) may be involved in the different stages of DN. The role of epithelial-mesenchymal transition in renal fibrosis has been intensively investigated. Recently, endothelial-mesenchymal transition, or endothelial-myofibroblast transition (EndoMT) has emerged as another mechanism involved in both developmental and pathological PD0325901 processes. The essential role of EndoMT in cardiac development has been thoroughly studied. EndoMT also exists and contributes to the development and progression of cardiac fibrosis, lung fibrosis, liver fibrosis and corneal fibrosis.

EndoMT

is a specific form of epithelial-mesenchymal transition. During EndoMT, endothelial cells lose endothelial markers and obtain mesenchymal markers. Recent evidence from our laboratory and others suggests that EndoMT plays an important role in the development of renal fibrosis in several pathological settings, including experimental DN. This review considers the evidence supporting the occurrence of EndoMT in normal development and in pathology, as well as the latest findings suggesting EndoMT contributes to fibrosis in DN. Whether experimental findings of EndoMT will be reproduced in human studies remains to be determined. Glomerular and interstitial fibrosis are the key morphological features of diabetic Ibrutinib chemical structure nephropathy (DN), and both correlate well with the development and progression of renal disease.1 While mesangial cells and podocytes are thought to be major mediators of DN, increasing evidence suggests that renal tubulointerstitial fibrosis also plays a key role in the progression to end-stage renal disease,2 making this an important therapeutic target. Myofibroblasts play a major role in the synthesis and secretion of extracellular matrix in the development and progression of renal fibrosis. In DN, cells expressing α-smooth muscle actin (α-SMA), the putative marker of myofibroblasts, are located primarily in the renal interstitium and to a lesser extent in glomeruli in association with mesangial cell proliferation.

Five centres were included and a total of 4211 hospitalized patie

Five centres were included and a total of 4211 hospitalized patients were enrolled.

All samples were assayed for dipstick protein (DSP), specific gravity (SG), 24 h UP and serum albumin (ALB) simultaneously. 4211 patients were randomly divided into two groups for establishing and testing the equations. Equations were built by multiple log-linear regressions. (i) DSP is significantly correlated to 24 h UP in a logarithmic pattern; (ii) SG interprets 24 h UP for specific DSP; (iii) Equation 1 = 0.203 × 10dummy-variable F × [100 (SG-1)]−0.470; and (iv) Equation 2 = 13.366 × 10dummy-variable F × [100 TAM Receptor inhibitor (SG-1)]−0.547 × [ALB (g/L)]−1.130 The dummy-variable F had a point-to-point accordance to DSP (detailed in text). Combination of DSP and SG can interpret normal-range proteinuria well, and helped by ALB, their interpretation for macro proteinuria is much improved. It is dependable and economical for routine urinalysis to evaluate pathological proteinuria PLX3397 by equation. “
“Aim:  Polycystic kidney disease (PKD) in humans involves kidney cyst expansion beginning in utero. Recessive PKD can result

in end-stage renal disease (ESRD) within the first decade, whereas autosomal dominant PKD (ADPKD), caused by mutations in the PKD1 or PKD2 gene, typically leads to ESRD by the fifth decade of life. Inhibition of mTOR signalling was recently found to halt cyst formation in adult ADPKD mice. In contrast, no studies have investigated potential treatments to prevent cyst formation in utero in recessive PKD. Given that homozygous Pkd1 mutant mice exhibit cyst formation in utero, we decided to investigate whether mTOR inhibition in utero ameliorates kidney cyst formation in foetal Pkd1 homozygous mutant mice. Methods:  Pregnant Pkd1+/− female mice (mated with Pkd1+/− male mice) were treated with rapamycin from E14.5 to

E17.5. Foetal kidneys were dissected, genotyped and evaluated by cyst size as well as expression of the developmental marker, Pax2. Results:  Numerous cysts were present in Pkd1−/− kidneys, which were twice the weight of wild-type kidneys. Cyst size was reduced by a third in rapamycin-treated Pkd1−/− kidney sections and kidney mass was reduced to near wild-type levels. However, total cyst number was not reduced compared with control embryos. Pax2 expression and kidney development were unaltered in rapamycin-treated Pyruvate dehydrogenase mice but some lethality was observed in Pkd1−/− null embryos. Conclusion:  Rapamycin treatment reduces cyst formation in Pkd1−/− mutant mice; therefore, the prevention of kidney cyst expansion in utero by mTOR inhibition is feasible. However, selective rapamycin-associated lethality limits its usefulness as a treatment in utero. “
“The coagulation cascade is complex but well studied. Dialysis membranes and lines are inherently pro-coagulant and activate both the intrinsic and extrinsic pathways of coagulation, as well as platelets and other circulating cellular elements.

Again, this adds impetuous to the need for clinical intervention

Again, this adds impetuous to the need for clinical intervention trials with supplement of the circulating

25-OHD pool, which may be less harmful than supplementation with active vitamin D. Currently there is growing interest in the phosphaturic bone-hormone fibroblast growth factor 23 (FGF-23), which acts by binding to a membrane RXDX-106 molecular weight bound α-Klotho-FGF receptor 1c complex in the distal tubules of the kidney, and by an unknown signalling mechanism reduces phosphate reabsorption in the proximal tubules.133 FGF-23 also acts as a negative regulator of PTH secretion by the parathyroid glands, and also directly inhibits 1,25-OHD production in the kidneys by reducing CYP27B1 activity.133 FGF-23 levels are elevated in early kidney disease, find more and in various observational studies have shown association with vascular calcification, increased left ventricular mass in all stages of CKD, and importantly is an independent predictor of mortality in incident dialysis patients.134 It has been suggested that the

early changes in FGF-23 concentrations to maintain a normal serum phosphate in CKD may explain the alteration in vitamin D metabolism observed and could be the underlying causative factor for increased cardiovascular risk, not abnormal vitamin D metabolism per se. However, to date no Klotho protein complex has been isolated in any tissue pertinent to the cardiovascular system outside the kidneys, and in response to the supposition that supraphysiological levels of FGF-23 encountered

could act in a non-receptor driven fashion, it should be noted that in Meloxicam non-renal conditions associated with excessive FGF-23 (e.g. X-linked hypophosphataemia or tumour-induced osteomalacia) notable increases in cardiovascular risk are not encountered. This is a growing area of research attention and more data should be available in the near future. Patients with CKD are at significant risk of cardiovascular disease, beyond that of the normal population, and this is not fully explained by the traditional Framingham risk factors. Vitamin D deficiency is increasingly common as CKD progresses, for a variety of reasons. Experimental and clinical studies suggest that vitamin D may improve cardiovascular risk through such diverse mechanisms as improved glycaemic control, anti-inflammatory actions, enhanced endothelial function, decreased atherosclerosis and atherogenesis, suppression of the RAS, reduction of proteinuria, and improved cardiovascular physiology (summarized in Fig. 2).

It has

been suggested that CD127− Treg and foxp3+ Treg po

It has

been suggested that CD127− Treg and foxp3+ Treg possibly represent different populations [9]. In our study, a correlation between these two Treg subsets was found only in the control group. In a study of HIV infection, the positive correlation between foxp3+CD127− and CD25+CD127− CD4+ T cells found in healthy HIV-negative subjects was not present in the early chronic stage of HIV infection [23]. Together these data indicate that different Treg may contribute in various stages of chronic infections. It has been shown that depletion of CD4+CD25high and CD4+CD25+foxp3+ cells from PBMCs from patients with TB, results in increased production of IFN-γ upon TB stimulation [10, 11, 24], indicating that there is an inverse correlation between Treg and immune check details activation. In contrast, although the immunosuppressive function of Treg was not characterized in our study, we found a positive correlation between the fractions of Treg and activated CD4+ T cells. DC can initiate immune responses and stimulate induction and expansion

of Treg [14]. Absolute numbers of DC have been shown to decrease in patients with Dabrafenib nmr TB compared to healthy controls [17]. Still, although the numbers of pDC and mDC were not estimated, in our study, we did not find any differences in the fraction of DC subsets among the various groups or any correlation between DC and Treg subsets. Altogether, these data suggest that different Treg subsets may have different capability to regulate immune activation and that modulation may be induced by different signals in the various stages of TB infection. As we found gradually higher fractions of CD127− Treg throughout the various stages of TB infection correlating to immune activation, a possible theory is that higher bacterial burden and inflammation

stimulate to increased levels of Treg to balance between anti-TB T cell responses and immune-mediated pathology. In support of this, in a study of macaques, there were increased frequencies of Treg cells in blood as the animals developed disease [25]. An alternative explanation may be that Treg inhibit protective PAK6 Th1 responses facilitating mycobacterial replication and act as a causative factor in the progression to active disease [12]. We found an increase in foxp3+ Treg after preventive anti-TB treatment. Our very limited data demonstrate that this was most dominant in patients converting to QFT negative and with reduced CD8+ T cell activation after treatment, possibly indicating that expansion of this Treg subset contributes to suppression or eradication of TB. Apoptosis of TB reactive T cells may account for the depression of TB-induced T cell responses seen in active TB, but data are conflicting [3, 26]. CD95 (Fas receptor), which upon ligation with Fas ligand induces an apoptotic death signal, was expressed by a higher proportion of CD8+ T cells and a lower proportion of CD4+ T cells in patients with pulmonary TB [3].

In such cases, IL-2-mediated bystander activation of these pre-ac

In such cases, IL-2-mediated bystander activation of these pre-activated CD25+ CD4+ T cells by Ag-stimulated Ag-specific CD4+ memory T cells, as suggested by Di Genova et al. 12, could occur and boost suboptimal responses BGJ398 of the former, thus favoring chronic inflammation and immunopathology 17. Although “classic” IFN/IL-15-mediated bystander activation provides an explanation as to how resting heterologous CD8+ T cells are recruited to an ongoing immune response, the IL-2-dependent type of bystander activation focuses on recently activated CD4+ T cells. As CD4+ T cells can differentiate into many different

functional subsets and exert diverse functions 13, such CD4+ T-cell bystander activation might affect immune homeostasis in a very different way as compared with bystander activation of CD8+ T cells. Thus, it will be of interest to Selleckchem GSK1120212 further investigate the fate of CD4+ T cells stimulated by IL-2-mediated bystander activation, as IL-2 is known to exert somewhat opposing functions in the immune system, being able to either promote cell survival or favor apoptosis depending on the circumstances 13. Likewise, previous work on bystander proliferation of CD4+ T cells

has also described opposing outcomes such as prolonged survival or rapid cell death 18, 19. Future studies will have to address these outstanding issues. This work was supported by a grant from the Swiss National Science Foundation (♯320000-118471). Conflict of interest: The author declares no

financial or commercial conflict of interest. See accompanying article: http://dx.doi.org/10.1002/eji.200940017 “
“Currently, placentitis, an important cause of late pregnancy loss in mares, is diagnosed by clinical signs and ultrasonography. Acute phase proteins (APP) are mainly produced and secreted by the liver in response to acute inflammatory stimuli. We hypothesized that APP are increased in mares with placentitis. Concentrations of serum amyloid A (SAA), haptoglobin (Hp), Wilson disease protein fibrinogen (Fb), and white blood cell counts (WBC) were determined in plasma of mares with experimentally induced placentitis and gestationally age-matched control mares. Placentitis was induced via intracervical inoculation of Streptococcus equi subspecies zooepidemicus, a common isolate from clinical cases of bacterial placentitis. Concentrations of SAA and Hp were also determined in the 10 days pre-partum in normal mares. Mares with placentitis aborted within 5–25 days after inoculation. Concentrations of SAA and Hp rapidly increased subsequent to experimental induction of placentitis and remained increased until abortion. Neither Fb nor WBC appeared to be useful markers for placentitis. Parturition did not trigger increase in either SAA or Hp in normal foaling mares.

The three serum collectins differ from SP-D by having insertions

The three serum collectins differ from SP-D by having insertions adjacent to amino acid 325 and substitution of hydrophobic residues for arginine 343. We previously showed that a three amino acid (RAK) insertion, as found in CL-43, increases antiviral activity and mannan-binding activity of the hSP-D-NCRD, while the substitution of valine at 343, as in conglutinin, more strongly increased these activities. Mannan-binding activity of collectins has been considered to predict for ability to bind to high mannose glycans on viruses or other pathogens. We now show, however, that combined mutants containing the RAK insertion and R343V or R343I

substitutions have greatly increased mannan-binding ability, but lower IAV binding or inhibiting activity than mutants containing R343V or R343I substitutions only. These findings indicate selleck screening library differences in the recognition of glycan structures of mannan and IAV by the NCRD and emphasize the importance of the flanking sequences in determining the differing interactions of human SP-D and bovine serum collectins with mannose-rich glycoconjugates on IAV and other pathogens. Of interest, we show conservation of some monoclonal antibody-binding epitopes between bovine collectin NCRD and hSP-D, suggesting shared structural

motifs. Surfactant protein D (SP-D) is present in lung lining fluids and a variety of other mucosal locations where it participates in binding and inhibiting a wide range of infectious organisms, including bacteria, fungi and viruses [1]. SP-D is a member SCH772984 nmr of the collectin family of innate defence proteins that contain a structurally important collagen domain and trimeric neck and carbohydrate recognition domains (termed NCRD from here on) that are involved in calcium-dependent binding to specific carbohydrate epitopes on microorganisms or mammalian cells. We and others have studied the interactions of SP-D with influenza A viruses (IAV). Mice lacking SP-D because of gene-deletion exhibit

more severe illness, higher viral loads and greater inflammatory response when infected with human strains of 3-oxoacyl-(acyl-carrier-protein) reductase IAV [2–5]. Inhibition of IAV by SP-D is determined mainly by the presence of high mannose oligosaccharides on the viral hemagglutinin (HA) [6–9]. SP-D also plays an important role in inhibiting inflammatory responses triggered by lipopolysaccharide (LPS) and bacteria. Of interest, binding of SP-D to the highly conserved core of LPS is mediated by binding to heptoses through a crystallographically distinct mechanism from its binding to monosaccharides like glucose or mannose [10]. Finally, SP-D plays an important role in maintenance of surfactant lipid homoeostasis in vivo. SP-D binds specifically to phosphatidylinositol (PI) through recognizing the inositol moiety [11], and this may be responsible for SP-D’s effects on surfactant homoeostasis [12, 13].


“Because jawless vertebrates are the most primitive verteb


“Because jawless vertebrates are the most primitive vertebrates, they have been studied to MG-132 manufacturer gain understanding of the evolutionary processes that gave rise to the innate and adaptive immune systems in vertebrates. Jawless vertebrates have developed lymphocyte-like cells that morphologically resemble the T and B cells of jawed vertebrates, but they express variable lymphocyte receptors (VLRs) instead of the T and B cell receptors that specifically recognize antigens in jawed vertebrates. These VLRs act as antigen receptors,

diversity being generated in their antigen-binding sites by assembly of highly diverse leucine-rich repeat modules. Therefore, jawless vertebrates have developed adaptive immune systems based on the VLRs. Although pattern recognition receptors, including Toll-like receptors (TLRs) and Rig-like receptors (RLRs), and their adaptor genes are conserved in jawless vertebrates, some transcription factor and inflammatory cytokine

genes p38 MAPK pathway in the TLR and RLR pathways are not present. However, like jawed vertebrates, the initiation of adaptive immune responses in jawless vertebrates appears to require prior activation of the innate immune system. These observations imply that the innate immune systems of jawless vertebrates have a unique molecular basis that is distinct from that of jawed vertebrates. Altogether, although the molecular details of the innate and adaptive immune systems differ between jawless and jawed vertebrates, jawless vertebrates have developed versions of these immune systems that are similar to those of jawed vertebrates. Vertebrate immune systems have innate and adaptive immunity components. In these immune

systems, different types of receptors play important roles in pathogen recognition. Innate immunity provides the first line of defense against pathogens. In the innate immune system, PRRs, such as the TLRs, NLRs and RLRs, recognize PAMPs [1]. Recognition of PAMPs rapidly induces antimicrobial responses in infected cells and activates innate immune cells, including macrophages and DCs, that act as APCs[2]. In contrast, antigen-specific Dichloromethane dehalogenase responses and immunological memory characterize the adaptive immunity system. In this immune system, TCRs and BCRs act as antigen-specific receptors on T and B cells, respectively. An assembly of variable (V) and joining (J), or V, diversity (D) and J gene fragments generate variability in the antigen-binding regions of these receptors [3]. RAGs mediate rearrangement of the antigen receptor genes. The antigen receptors allow the organisms to have an immune repertoire that is able to specifically recognize virtually any antigen. Whereas BCRs and their soluble form, antibodies, directly recognize antigens, TCRs recognize processed antigen peptide and MHC molecule complexes on infected cells and APCs [4].