Appl Surf Sci 2013, 266:386–394 CrossRef 19 Geng YQ, Yan YD, Xin

Appl Surf Sci 2013, 266:386–394.CrossRef 19. Geng YQ, Yan YD, Xing YM, Zhao XS, Hu ZJ: Modelling and experimental study of machined depth in AFM-based milling of nanochannels. Int J Mach Tool Manuf 2013, 73:87–96.CrossRef 20. Dongmo LS, Villarrubia JS, Jones SN, Renegar TB, Postek MT, Song JF: Experimental test of blind tip reconstruction for scanning probe microscopy. Ultramicroscopy 2000, 85:141–153.CrossRef 21. Hokkirigawa K, Kato K: An experimental and theoretical investigation of plowing, cutting

and wedge formation during abrasive wear. Tribol Int 1988, 21:51–57.CrossRef 22. PF-01367338 molecular weight Koinkar VN, Bhushan B: Scanning and transmission electron microscopies of single-crystal silicon microworn/machined using atomic force microscopy. J Mater Res 1997,12(12):3219–3224.CrossRef ARS-1620 Competing interests The authors declare that they have no competing interests. Authors’ contributions YDY and YQG carried out the design and drafted the manuscript. XSZ and ZJH participated in the experiments. BWY and QZ assisted with the optimization and proofed the manuscript. All authors read and approved the final manuscript.”
“Review Introduction The emphasis for nanocomposite materials by the scientific community and the industry continues to grow and to develop. The new allotropes of carbon

transformations observed recently give to this material a privileged place and as well as an interesting prospect in various fields such as energy, mechanics, and superconductivity [1–6]. The high performance of polymer nanocomposites offers new perspectives in the materials science field. The substitution of heavy metal parts in many applications has become possible, thanks to the benefits offered by polymers containing carbon

nanotubes. Lightness, elasticity, and corrosion resistance make these nanocomposites very competitive in various fields PLEK2 of technology [7–9]. The intensification of industrial processes today is to greatly extend based on the durability of machine assembly units and equipment working in friction units. This durability is of particular importance for friction units which operate in extreme conditions, particularly in a hostile environment, at high temperatures, etc. Thus, there is the need of development of new Osimertinib research buy wear-resistant materials with a low friction coefficient (kfr), high values of wear resistance with thermal conductivity, which would be resistant to hostile environments. The latter is a topical issue in our days, although there is no unique solution to the cited above issue. Indeed, there are several ways to extend the capability of the existing materials in order to be used in the abovementioned conditions. Experimental In the present study, we investigate the possibility of making a new wear-resistant material in hostile environments, the nanocomposite materials (NCM) based on a fluoroplastic matrix F4 and on multi-walled carbon nanotubes (MCNT). These nanotubes were obtained by CVD method in a rotating reactor [10].

Comparing of compounds 18, 20, 22, and 23 indicated that the cyto

Comparing of compounds 18, 20, 22, and 23 indicated that the cytotoxic activity against SW707, CCRF/CEM, T47D, and P388 were in the order ethoxycarbonyloxy > hydrophthaloyloxy > cinnamoyloxy > benzoyloxy. Whereas the activity of these compounds against B16 was as follows: ethoxycarbonyloxy > cinnamoyloxy > benzoyloxy > hydrophthaloyloxy. It is interesting to note that the acyloxy compounds 16–25, prepared in this study, exhibited the most potent cytotoxicity against cancer cell B16 melanoma. These results may suggest

that 4-acyloxy-2-butynyl function is important for anti-melanoma activity. Another noteworthy feature of the obtained results was the observation that acyloxy compounds 19, selleck kinase inhibitor 21, and 24 exhibited the most potent cytotoxicity with ID50 values <3.1 μg/ml against B16 cancer cell line, among all the compounds (5–25) prepared in this study. The replacement of methyl group by propargyl, compounds 23 and 25, respectively, resulted in decrease of activity. Conclusions Novel acetylenic thioquinolines 6–12 and 16–25, possessing in positions

3 and 4, one or two, propargyl, 4-chloro-2-butynyl, or 4-acyloxy-2-butynyl groups were synthesized in good yields using Ulixertinib nmr 4-chloro-quinoline derivatives 3–5 and 4-hydroxy-2-butynyl derivatives 13–15 as starting material. The obtained OSBPL9 compounds were evaluated for antiproliferative activity in vitro against three human cancer cell lines: SW707 (colorectal cancer), CCRF/CEM (leukemia), T47D (breast cancer) and two murine cancer cell lines: P388 (leukemia), B16 (melanoma). All the tested compounds showed varied activity against different cancer cell lines. As a result of the SAR, it was revealed that the nature of the acetylenic substituent at the C-3 and C-4 positions

and character of the heteroatoms (Se and S) at C-4 critically influence the anticancer activity in vitro of the studied compounds. Among the prepared compounds, 8, 12, and 21 were found to be the most active, with ID50 values ranging from 0.4 to 3.8 μg/ml comparable to that of Ro 61-8048 mw referential anticancer drug, cisplatin. It is of interest to note that the 4-acyloxy-2-butynyl function is important for anti-melanoma activity. The obtained compounds seem to be good candidate for further anticancer activity studies in vitro using a broad panel of human and murine cell lines with the aim to select compounds for studies in vivo. Experimental General techniques Melting points were determined in open capillary tubes on a Boetius melting point apparatus and are uncorrected. 1H NMR (300 MHz) spectra were recorded on a Bruker MSL 300 spectrometer in CDCl3 solvents with tetramethylsilane as internal standard; chemical shifts are reported in ppm (δ) and J values in Hz.

Shen X, Allen PB, Muckerman JT, Davenport JW, Zheng JC: Wire vers

Shen X, Allen PB, Muckerman JT, Davenport JW, Zheng JC: Wire versus tube: stability of small one dimensional ZnO nanostructures. Nano Lett 2007, 7:2267–2271. CrossRef 7. Zhou Z, Li Y, Liu L, Chen Y, Zhang SB, Chen Z: Size- and surface-dependent stability, electronic properties, and potential as

chemical sensors: computational studies on one-dimensional ZnO nanostructures. J Phys Chem C 2008, 112:13926.CrossRef 8. Ozgür U, Alivov Ya I, Liu C, Teke A, Reshchikov MA, Doan S, Avrutin V, Cho SJ, Morkoc HA: A comprehensive review of ZnO materials and devices. J. Appl. Phys 2005, 98:041301.CrossRef 9. Kim KK, Kim HS, Hwang DK, Lim JH, Park SJ: Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant. Appl Phys Lett 2003, 83:63–65.CrossRef GSK461364 chemical structure 10. Ryu YR, Zhu S, Look DC, Wrobel JM, Jeong HM, White selleck kinase inhibitor HW: Synthesis of p-type ZnO films. J Cryst Growth 2000, 216:330–334.CrossRef 11. Park CH, Zhang SB, Wei SH: Origin of p-type doping difficulty

in ZnO: the impurity perspective. Phys Rev B 2002, 66:073202.CrossRef 12. Wardle MG, Goss JP, Briddon PR: Theory of Li in ZnO: a limitation for Li-based p-type doping. Phys Rev B 2005, 71:155205.CrossRef 13. Yan YF, Al-Jassim MM, Wei SH: Doping of ZnO by group-IB elements. Appl Phys Lett 2006, 89:181912.CrossRef 14. Bian JM, Li XM, Gao XD, Yu WD: Deposition and electrical properties of N–In codoped p-type ZnO films by ultrasonic spray pyrolysis. Appl Phys Lett 2004, 84:541–543.CrossRef 15. Ahn KS, Yan YF, Shet S, Todd D: Enhanced photoelectrochemical responses of ZnO films through Acyl CoA dehydrogenase Ga and N codoping. Appl Phys Lett 2007, 91:231909.CrossRef

16. Wu MH, Pei Y, Zeng XC: Planar tetracoordinate carbon strips in edge decorated graphene nanoribbon. J Am Chem Soc 2010, 132:5554–5555.CrossRef 17. Li YL, Zhao X, Fan WL: Structural, electronic, and optical properties of Ag-doped ZnO nanowires: first principles study. J Phys Chem C 2011, 115:3552–3557.CrossRef 18. Usuda M, Hamada N, Kotani T, Van Schilfgaared M: All-electron GW calculation based on the LAPW method: application to wurtzite ZnO. Phys Rev B 2002, 66:125101.CrossRef 19. Zhang YG, Zhang GB, Wang YX: First-principles study of the electronic structure and optical properties of Ce-doped ZnO. J Appl Phys 2011, 109:063510.CrossRef 20. Xie FW, Yang P, Li P, Zhang LQ: First-principle study of optical properties of (N, Ga) codoped ZnO. Opt Commun 2012, 285:2660–2664.CrossRef Competing interests The authors declare that they have no competing interests. Authors’ contributions P-JW and C-WZ conceived the idea and designed the calculated model. X-YF carried out the electronic structure calculations and data analysis. X-JX performed the analysis method of optical properties. All authors read and approved the final manuscript.”
“Background In modern agriculture, various agrochemicals such as pesticides, herbicides, and plant regulators are widely used for effective pest management and ensuring optimum crop yield.

0, 300 mM NaCl, 25 mM imidazole, and 5 mg/ml lysozyme and incubat

0, 300 mM NaCl, 25 mM imidazole, and 5 mg/ml lysozyme and incubated on ice for 30 min. Subsequently, the cells were further RepSox molecular weight lysed by sonification (4 × 1 min pulse, 1 min break, MS72 probe with 25% power; Bandelin Sonoplus HD2200, Berlin, Germany) and the soluble 6His-MleR extract was separated from insoluble cell material by centrifugation (25,000 × g, 30 min, 4°C). The 6His-MleR protein was then purified by IMAC affinity chromatography using Talon resin (Clontech, Saint-Germain-en-Laye, France). Bound protein

was washed with 8 bed volumes 50 mM NaH2PO4, pH 7.0, 300 mM NaCl, 25 mM imidazole and eluted with 50 mM NaH2PO4, pH 7.0, 300 mM NaCl, 300 mM imidazole. The eluted 6His-MleR protein (purity >90% on an SDS PAGE) was always stored on ice and was verified by western blot (Anti His-tag antibody, Novagen) and N-terminal sequencing. Electrophoretic mobility shift assay (EMSA) For binding studies, the purified MleR protein was dialysed four times against 1 liter 1× binding buffer (20 mM Tris, pH 7.5, 100 mM KCl, 2 mM EDTA, 10% glycerol) at 4°C for 12 hours using a

12-14 kDa cut-off dialysis bag (Medicell International Ltd., London, UK). Several fragments of the region between mleR and mleS were PCR amplified and directly used for gel retardation experiments (see Table 3 for primers). To verify the specificity of the DNA-MleR interaction each KU-57788 cell line reaction mixture contained an equal amount of competitor DNA. Competitor DNA consisted either of an internal fragment of mleS, amplified by PCR (primers 137qF/R), or a DNA fragment within the upstream region of mleR, generated by hybridising complementary primers (EP10/11, Gemcitabine cell line Table 3). Nepicastat solubility dmso For this purpose, primers EP10/11 were mixed in equal molar ratios, denaturated by heating to 100°C and annealed by slowly cooling down to room temperature. DNA fragments, MleR protein (appr. 100 ng) and competitor DNA (in case of the complementary primers 75 ng/μl, final concentration) were mixed and incubated for 20 min at ambient temperature. To further exclude unspecific interactions, MleR was substituted with 100 ng BSA (Carl-Roth) and tested for each fragment. The reaction mixtures

were subsequently loaded onto a 0.5× TBE, 4.5% polyacrylamide (37.5:1, acrylamide/bisacrylamide) gel. Since the MleR protein has a calculated pI of ~9, DNA in complex with MleR was hardly entering the gel using pH values below 9.2. Therefore the pH of the gel cast solution and electrophoresis buffer were adjusted to pH 9.45. L-malate was added to the binding reaction, the gel and the electrophoresis buffer (0.5× TBE) at 5 mM final concentration when needed. Electrophoresis was carried out at 10 V/cm at ambient temperature and the gel was stained using SYBR Gold (Invitrogen). Acknowledgements We would like to thank Andreas Podbielski for providing the pFW5 plasmid and Holger Lössner for providing the pHL222 plasmid. References 1.

Recently, Asato et al [16] and Fraga et al [17] analyzed the ph

Recently, Asato et al. [16] and Fraga et al. [17] analyzed the phylogeny of genus Leishmania using the sequences obtained from the cyt b and the hsp70

regions and demonstrated the improvement of Leishmania classification from the traditional method proposed by Lainson and Shaw [30]. Their studies showed that these genes contained sufficient information for distinguishing species/subspecies and also human/nonhuman Leishmania. The high YAP-TEAD Inhibitor 1 order congruency between the cyt b and the hsp70 trees corresponding to the current classification were, thus, logically acceptable as the precise relationship of genus Leishmania. Employing the L. siamensis taxa into these trees provided more knowledge of this species in relation to other previously identified Leishmania species. Previous

studies showed the early divergence of L. enrietti from other Leishmania groups, closely related to genus Endotrypanum, suggesting that this species may not belong to genus Leishmania [16]. In this study, grouping between both lineages of L. siamensis and VX-689 molecular weight L. enrietti rearranged the phylogenetic AZD0530 research buy position of L. enrietti compared with a previous tree shown by Asato et al. [16]. The close relationship between lineage TR (previously described as Trang strain) and L. enrietti was supported by our previous work using concatenated sequences of three Leishmania protein-coding genes to construct the tree [8]. As shown in this study, L. enrietti and L. siamensis formed (-)-p-Bromotetramisole Oxalate independent sister clades and shared the same branch of the members classified as Euleishmania, leaving the group of Paraleishmania completely separated. This finding distinctly indicated that they might be part of an unclassified subgenus of Leishmania. Unfortunately,

the hsp70 sequences of L. enrietti and other species belonging to Paraleishmania were not available in the GenBank, and the alternative notion of this idea could not be obtained by the hsp70 tree in this study. However, the phylogenetic position of L. siamensis was in good agreement between the hsp70 and the cyt b trees in that these species were members of neither L. (Leishmania) nor L. (Viannia) and they should be regarded as an unclassified subgenus. Since the identification of L. siamensis from a Thai VL case has been described using the comparison of mini-exon and ITS1 sequences in 2008 [7], more cases presumably caused by the same Leishmania species were reported on other continents. In 2009, autochthonous cutaneous leishmaniasis (CL) was reported in horses and a cow in Switzerland and Germany, followed by an additional case in a mare from the USA in 2012 [31–33]. These cases showed high ITS1 similarity compared with those previous reports of L. siamensis. To elucidate the relationship among the Leishmania detected from these cases and L. siamensis, these sequences were phylogenetically analyzed. The phylogenetic tree of ITS1 region, again, separated the L. siamensis lineage TR from lineage PG.

Abnormally high RABEX-5 expression has been implicated in breast

Abnormally high RABEX-5 expression has been implicated in breast cancer and colorectal cancer, but the function

of RABEX-5 in prostate cancer has not been well studied. To date, an association between RABEX-5 expression and prostate cancer has not been reported. Therefore, reverse BYL719 concentration transcription polymerase chain reaction analysis was performed on paired samples of prostate cancer tissue and noncancerous tissue adjacent to the cancer lesion isolated from the same patient. Our data showed that there is an elevation in RABEX-5 mRNA expression in prostate cancer tissues compared to adjacent noncancerous tissues. We next Luminespib in vitro investigated the associations between abnormal RABEX-5 mRNA expression and clinicopathological factors. High

expression of RABEX-5 mRNA was found to significantly correlate with lymph node metastasis, clinical Acadesine clinical trial stage, preoperative prostate-specific antigen, biochemical recurrence, and Gleason score. In contrast, there were no significant correlations between abnormal RABEX-5 mRNA expression and age, surgical margin status, seminal vesicle invasion, and angiolymphatic invasion. This is the first study to elucidate the clinicopathological significance of RABEX-5 mRNA expression in patients with prostate cancer. In the present study we also have investigated the prognostic impact of RABEX-5 mRNA in a previously described cohort of 180 surgically resected prostate cancer patients [12–14]. To confirm the representativeness of the prostate cancer in present study, we analyzed established prognostic predictors of prostate cancer patient survival. Galeterone The data showed a significant impact of well-known clinical pathological prognostic parameters, such as seminal vesicle invasion, and Gleason score. Assessment of biochemical recurrence free survival in prostate cancer revealed that the high expression

level of RABEX-5 mRNA was correlated with adverse biochemical recurrence free survival of prostate cancer patients. Since variables observed to have a prognostic influence by univariate analysis may covariate, the expression of RABEX-5 mRNA and those clinicalopathological parameters that were significant in univariate analysis were further examined in multivariate analysis. Multivariate analysis revealed that RABEX-5 mRNA expression was an independent predictor of biochemical recurrence free survival. Our data demonstrate a marked increase in RABEX-5 mRNA expression in tumors compared to noncancerous tissue, with a significant and independent relationship between high RABEX-5 mRNA expressing tumors and reduced postoperative overall survival. It seems convincing that the high RABEX-5 mRNA expression conferred a very unfavorable prognosis in our study cohort. The high expression of RABEX-5 mRNA was a significant indicator for predicting poor outcome after radical prostatectomy.

1 >0 05 P54578 Ubiquitin carboxyl-terminal hydrolase 14 USP14 1 2

1 >0.05 P54578 Ubiquitin carboxyl-terminal hydrolase 14 USP14 1.2 >0.05 P04083 Annexin A1 A-I 0.9 >0.05 P08758 Annexin A5 A-V 0.8 >0.05 Table 4 WBC stimulated: for legend see Table 1 Acc-no Protein name Abbreviations Increase factor ANOVA (Pf) P43686 26S protease regulatory subunit 6B TBP-7 1.2 >0.05 P11021 78-kDa glucose-regulated protein BiP 1.1 >0.05 P13639 Elongation factor 2 EF-2 1.0 >0.05 P10809 60-kDa heat-shock protein, mitochondrial hsp60 2.7 <0.001 P08107 Heat-shock 70-kDa protein 1 hsp70 1.5 0.031 P43932 Heat-shock 70-kDa protein 4 hsp70/4 0.9 >0.05 P08238 Heat-shock protein 90 hsp90 0.9 >0.05 P52597 Heterogeneous nuclear ribonucleoprotein F hnRNP F 1.2 >0.05 Q14697

Neutral alpha-glucosidase AB G2 α nd nd P17987 T-complex protein 1, alpha subunit TCP-1α 1.3 0.037 P78371 T-complex Selleck BIBW2992 protein 1, beta subunit TCP-1β 1.3 0.023 P48643 T-complex protein 1, epsilon subunit TCP-1ε 1.5 <0.001 P49368 T-complex protein 1, gamma subunit TCP-1γ 1.0 >0.05 P50990 T-complex protein

1, theta subunit TCP-1τ 1.0 >0.05 P54578 Ubiquitin carboxyl-terminal hydrolase 14 USP14 1.0 >0.05 P04083 Annexin A1 A-I 1.1 >0.05 P08758 Annexin A5 A-V 1.2 >0.05 Possible mechanisms During electromagnetic exposure, we applied 5 min of BMS202 “exposure on” and 10 min of “off” on the same cell types and/or conditions, which revealed DNA breaks (Diem et al. 2005; Franzellitti et al. 2010; Schwarz et al. 2008). Interestingly, we found the same cells reactive (e.g. fibroblasts, Table 2) or nonreactive (e.g. naïve lymphocytes, Table 3), when investigating protein synthesis. Resminostat This may

suggest a common underlying mechanism between DNA breaks and increased protein synthesis in reactive cells. With this exposure regime, the temperature difference between exposed cells and control cells was less than 0.15°C, we exclude a heat-related response. Heat-induced proteome alterations detectable with our proteome profiling methodology would require temperature differences greater than 1°C. Furthermore, a temperature increase of even 1°C does not affect e.g. TCP-1 family members (Gerner et al. 2002). We conclude that the warming of the cell cultures caused by RF exposure was too low to account for the present observations. Most of the proteins found to be induced by RF-EME are chaperones, which are mediators of protein folding. Since the applied electromagnetic fields were very weak, the direct and active denaturation of existing proteins by RF-EME exposure appears unlikely to underlie the observed increased level of protein synthesis. Resonance phenomena may concentrate radiation exposure-mediated physical check details energy on hot spots and have already been suggested to cause biological effects (Belyaev 2005). Indeed, exposure to low frequency electromagnetic fields caused effects, which were reduced by noise signals (Litovitz et al. 1997), providing further support for the concept of resonance as an underlying condition. Hydrogen bonds are known to resonate with microwaves.

2007) However, the overall results of these three studies seem i

2007). However, the overall results of these three studies seem inconsistent and none of the reported findings have been replicated. For example, a second case/control study

of breast cancer cases and organochlorine traces did not find a relationship between breast cancer and dieldrin concentrations in serum (Ward et al. 2000). As mentioned earlier, the Pernis plant is one of the few plants that produced dieldrin and aldrin and has the longest record of producing these substances. Therefore the cohort of 570 workers employed at this plant provides a unique opportunity to assess the potential long-term health risk in a population with a high occupational exposure to dieldrin and aldrin. Furthermore, it is the only cohort of its kind where detailed exposure assessment by industrial hygiene data and matching biological monitoring data is available. This exposure assessment was published in detail by de Jong LGX818 (1991). This study provided

data on individual exposures over the years of employment for all subjects who had been employed in the Pernis plants between 1954 (when dieldrin and aldrin production and formulation in this plant began) and 1970. Mortality data from this cohort have been updated and previously assessed Tucidinostat by de Jong et al. (1997) and Swaen et al. (2002). With this final update, data are made available with a mean follow-up of 38 years (ranges from 1 to 52 years). Therefore, this update provides a unique opportunity to assess the potential effects

on overall and cause-specific mortality from dieldrin and aldrin with an extended latency period. Methods Study population The population consisted of 570 male employees who worked for at least 1 year in one of the units of the pesticide production plants at Pernis between 1 January 1954 and 1 January 1970. The production plant consisted mainly of Tangeritin an intermediates production plant, an aldrin production plant, a dieldrin production plant and a formulation plant where the final products were mixed and diluted in such a way that they became suitable for agricultural use by customers. Static air sampling in 1958, 1959 and 1960 indicated that the air concentrations in the plant were usually a factor of 5–10 below the threshold limit value as a time weighted average (TLV–TWA) level of 0.25 mg/m3. However, some tasks, such as drum filling, resulted in exposure concentrations as high as 4 mg/m3. Because of the importance of skin contact to absorption, ambient air measurements are not thought to give an appropriate reflection of exposure. Therefore, estimations of total intake by means of biomonitoring data are regarded as far superior to ambient air monitoring within the given context. An extensive set of biomonitoring data on these workers is available. In the 1960s, several industrial hygiene and biological monitoring programs had been conducted.

Jaklitsch, W J 2881 (WU 24029, culture CBS 119321 = C P K 2140)

Corticium roseum, 31 Oct. 2005, H. Voglmayr & W. Jaklitsch, W.J. 2881 (WU 24029, culture CBS 119321 = C.P.K. 2140). Neotype of Eidamia viridescens, dried culture of the original strain CBS 433.34 (herb. CBS 7868), isolated from rotten apples, UK. Epitype of T. viridescens, designated by Jaklitsch et al. (2006b): C.P.K. 2140 deposited as a dry culture together with the holotype of H. viridescens as WU 24029a. Other specimens examined: Austria, Kärnten, Klagenfurt Land, St. Margareten im selleck chemical Rosental, Trieblach, above Kucher at roadside, MTB 9452/2, 46°33′15″ N, 14°25′19″ E, elev. 440 m, on logs of Picea abies >20 cm thick in a pile, holomorph, 14 Oct. 2006, W. Jaklitsch, W.J. 3022 (WU 29520, culture C.P.K. 3122). Oberösterreich,

Grieskirchen, Natternbach, forest close to Gaisbuchen, MTB 7548/3, 48°24′39″ N, 13°41′40″ E, elev. 580 m, on branch of Fagus sylvatica on leaf litter in spruce forest, 1 Aug. PF-04929113 price 2004, selleckchem H. Voglmayr, W.J. 2553 (WU 24022; culture C.P.K. 2043). Schärding, St. Willibald, Großer Salletwald at the road to Geiselham, MTB 7648/1, 48°21′06″ N 13°42′19″ E, elev. 450 m, on branch of Salix caprea 3–4 cm thick, 2 Sep. 2006, H. Voglmayr, W.J. 2970 (WU 29519, culture C.P.K. 2462). Steiermark, Liezen, Kleinsölk, walking path between Schwarzensee 1170 m, on log segment of Picea abies 100 cm thick in grass,

soc. Neonectria fuckeliana, 6. Aug. 2003, H. Voglmayr & W. Jaklitsch, W.J. 2306 (WU 24018; culture CBS 119324 = C.P.K. 942); (Ost-)Tirol, Lienz, Defereggental, Hopfgarten in Defereggen, Dölsach, at roadside between the current transformer and the beverage depot, MTB 9041/3, 46°55′23″ N, SDHB 12°32′41″ E, elev. 990 m, on stored log of Picea abies 16 cm thick, in grass, 4. Sep. 2003, W. Jaklitsch, W.J. 2374 (WU 24019; culture C.P.K. 947). Vienna, 22nd district, Lobau, at Panozzalacke, MTB 7865/1, 48°11′11″

N, 16°29′23″ E, elev. 150 m, on branch of Ulmus campestris 5 cm thick, holomorph, 18 Nov. 2006, W. Jaklitsch, W.J. 3037 (WU 29521, culture C.P.K. 2851). Vienna, 23rd district, Maurer Wald, MTB 7863/1, 48°08′57″ N 16 14′50″ E, elev. 360 m, on decorticated branch of Carpinus betulus on the ground, soc. Tubeufia cerea, 3 Oct. 1998, W. Jaklitsch, W.J. 1223 (WU 24009, BPI 747557; culture G.J.S. 98-182 = CBS 120067). Denmark, Soenderjylland, Roedekro, Rise Skov, between Roedekro and Aabenraa, 55°03′34″ N, 09°22′01″ E, elev. 70 m, on decorticated branch of Quercus robur 9 cm thick, on wood, soc. Mycena sanguinolenta, holomorph, anamorph with yellow spots, 23 Aug. 2006, H. Voglmayr & W. Jaklitsch, W.J. 2935 (WU 29517, culture C.P.K. 2442). Germany, Baden-Württemberg, Freiburg, Landkreis Schwarzwald-Baar-Kreis, Furtwangen, shortly before Kaltenherberg coming from Gasthof Thurner, MTB 8015/1, 47°59′36″ N, 08°10′50″ E, elev. 1000 m, on cut logs of Picea abies 20–40 cm thick, in a pile at roadside, part with white mould, 2 Sep. 2004, W. Jaklitsch & H. Voglmayr, W.J.

The potential energy of a particle in the spherical coordinates h

The potential Linsitinib supplier energy of a particle in the spherical coordinates has the following form: (1) where R 0 is the radius of a QD. The radius of a QD and effective Bohr radius of a Ps

a p play the role of the problem parameters, which radically affect the behavior of the particle inside a QD. In our model, the criterion of a Ps formation possibility is the ratio of the Ps effective Bohr radius and QD radius (see Figure 1a). In what follows, we analyze the problem in two SQ regimes: strong and weak. Figure 1 The electron-positron pair in the (a) spherical QD and (b) circular QD. Strong size quantization regime Osimertinib In the regime of strong SQ, when the condition R 0 ≪ a p takes place, the energy of the Coulomb interaction between an electron and positron is much less than the energy caused by the SQ contribution. In this approximation, the Coulomb interaction between the electron and positron can be neglected. The problem then

reduces to the determination of an electron and positron energy states separately. As noted above, the dispersion law for narrow-gap semiconductors is nonparabolic and is given in the following form [11, 36]: (2) where S ~ 108 cm/s is the parameter related to the semiconductor bandgap . Let us write the Klein-Gordon equation Volasertib concentration [43] for a spherical QD consisting of InSb with electron and positron when their Coulomb interaction is neglected: (3) where P e(p) is the momentum operator of the particle (electron, positron), is the effective selleck compound mass of the particle, and E is the total energy of the system. After simple transformations, Equation 3 can be written as the reduced Schrödinger equation: (4) where , is the effective Rydberg energy of a Ps, κ is the dielectric constant

of the semiconductor, and is a Ps effective Bohr radius. The wave function of the problem is sought in the form . After separation of variables, one can obtain the following equation for the electron: (5) where is a dimensionless energy. Seeking the wave function in the form , the following equation for the radial part of (5) could be obtained: (6) Here, , l is the orbital quantum number, m is magnetic quantum number, is the reduced mass of a Ps, is dimensionless bandgap width, is the analogue of fine structure constant, and is the analogue of Compton wavelength in a narrow bandgap semiconductor with Kane’s dispersion law. Solving Equation 6, taking into account the boundary conditions, one can obtain the wave functions: (7) where , J l + 1/2(z) are Bessel functions of half-integer arguments, and Y lm (θ, φ) are spherical functions [44]. The following result could be revealed for the electron eigenvalues: (8) where α n,l are the roots of the Bessel functions.