S. dysenteriae cells isolated from an infected host animal model (in vivo) revealed abundance increases of several TTSS proteins and effectors under in vivo conditions. Virulence proteins such as OspC2 and IpaB, increased in abundance in vivo, were previously determined to be immunogenic, indicating their potential
as vaccine candidates to combat shigellosis. Proteins important for the structural integrity of the bacterial HDAC inhibitor cell wall and outer membrane such as OM proteins, lipoproteins, and chaperones for the cell envelope structures were decreased in vivo, indicating morphological changes in the bacterial cell wall. This hypothesis needs to be explored further in the context of infection, pathogenicity and protection from host factors. Proteins involved in response to anaerobic and nutrient deficient conditions, oxidative stress and acid stress were increased in vivo, reflecting the importance of the biochemical processes
PI3K inhibitor permitting the survival of the pathogen in the complex host gut environment. Further characterization of proteins increased in abundance in vivo will contribute to the understanding of host-pathogen interactions and facilitate the design of new vaccine candidates. It remains to be determined how the absence of microflora in the intestinal milieu might impact these observations. Acknowledgements We thank Dr. M. M. Venkatesan from the Walter Reed Army Institute of Research at Maryland, USA for kindly providing the VE822 Shigella dysenteriae serotype 1 Sd1617 strain. Gefitinib ic50 At Tufts, we thank D. Girouard for performing the animal C-sections. This part of the work was supported by the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH) under contract number N01-AI-30050. At the JCVI, we thank T. Dracheva for helpful suggestions regarding bioinformatic tools for proteomic analysis, and S. Huang for submitting the SD1 proteomic datasets to the NCBI peptide data resource, Peptidome (Study PSE140 and Study PSE146). This part of the work was supported by the NIAID, NIH, under contract number N01-AI15447.
Electronic supplementary material Additional file 1: Table S1. Protein abundance estimates from APEX quantitation. APEX abundance values of 1761 S. dysenteriae serotype 1 (SD1) in vitro and in vivo proteins quantitated at a <5% false discovery rate using the APEX Quantitative Proteomics Tool are listed along with their pi, ni, and Oi values. The corresponding gene names, locus tags, physicochemical properties and subcellular localizations are also listed in the table. (XLS 977 KB) Additional file 2: Table S2. SD1 differential protein expression statistical analysis using Z-test and SAM. SD1 proteins listed in blue are upregulated under in vitro conditions. For the two tailed Z-test, SD1 proteins differentially expressed at 99% confidence are listed; for the two class SAM test, proteins differentially expressed at <10% FDR are listed. (XLS 122 KB) Additional file 3: Table S3.